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Abstract

We present a spectral element approach for modeling elastic wave propagation in a solid–fluid sphere where the local

effects of gravity are taken into account. The equations are discretized in terms of the displacement in the solid and the

velocity potential in a neutrally stratified fluid. The spatial approximation is based upon a spherical mesh of hexahedra in

which local refinement allows for adapting the discretization to the variation of elastic parameters in both the solid and the

fluid regions. Continuity constraints across the non-conforming interfaces are introduced through Lagrange multipliers

which are further discretized by the mortar element method. Due to the spherical nature of the non-conforming interfaces

the mortar method turns out to be functionally conforming and allows for an equal-order interpolation of the primal

variables and the Lagrangemultipliers. Themethod is shown to provide an accurate solutionwhen compared to analytical

calculations obtained for radial models of elastic parameters. Its parallel implementation is based upon a simple domain

decomposition strategy which makes it efficient to solve large problems as those imposed by planetary scales.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In global seismology, the development of accurate and computationally efficient methods to model

elastic wave propagation is a challenging issue. In the past two decades, recorded arrival times and
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differential travel times of body waves, measurements of phase and group velocities of surface waves, and

waveforms analysis have allowed global tomography to infer the heterogeneity distribution of seismic wave

speeds, anisotropy and intrinsic attenuation within the Earth�s interior [1–4]. Direct numerical simulation is

now required: (i) to better understand the physics of wave propagation in spherical heterogeneous models;

(ii) to assess the impact of the theoretical approximations, used in practice to compute synthetic seismo-

grams, on the tomographic models; and (iii) to assess the resolution of the seismic records and tomographic

models with respect to small scale heterogeneities.

Current methods used in global seismology are based upon spectral transform methods (STM) combined
with perturbative expansions around a spherically symmetric reference configuration. On one hand, STM

[5–8], which expand the solution and the physical variables into vector spherical harmonics, are remarkably

accurate and they avoid the so-called pole problem. On the other hand, perturbation theories always as-

sume small lateral variations in amplitude and small lateral gradients.

Among these methods, the use of normal modes summation has long been in the heart of global seis-

mology [3]. The normal modes of a reference spherical configuration, which are used as intermediate

functions for the computation of the seismograms, provide a complete basis in which aspherical and lateral

perturbations are further expanded [9]. In the case of lateral variations, the most sophisticated normal
modes methods [10–12] require to couple the modes along the same dispersion branch, while multiple

scattering is taken into account in the limit of the order retained in the perturbation. Even when restricted

to a second-order approximation, these methods face serious computational limits when dealing with

dominant periods lower than 50 s, which are actually required for realistic modeling of surface waves (with

periods as short as 25 s) or body waves (with typical periods of less than 10 s). For practical computations,

high-frequency (asymptotic) approximations [13,14] are, therefore, retained, combined with Born ap-

proximations [15–18], generally limited to the first order. The high-frequency approximation is valid as long

as the heterogeneities are much larger than the dominant propagating wavelength, while the first-order
Born approximation assumes that they can be considered only as secondary sources.

Other STM bypass the intermediate step of calculating normal modes by solving directly the elasto-

dynamic equation in the frequency domain, using either a strong [19] or a weak [20,21] formulation. In the

latter case, the so-called direct solution method, a Galerkin approximation is performed, with the trial and

weight functions being chosen as the tensor product of generalized spherical harmonics, combined with

cubic splines or Chebychev polynomials in the radial direction. Again, when lateral variations are con-

sidered the coupling between modes results in a very large and often ill-conditioned algebraic system.

Effective implementations of these methods then require some truncation in the actual coupling to be ef-
fectively solved.

STM involve the expansion of the variables, as well as the computation of spatial partial derivatives, into

a non-local spherical harmonics basis. The major drawbacks are, therefore: (i) the need for high-order

spherical expansions when lateral variations become rough and spatially localized; (ii) the use of a per-

turbative approximation when dealing with an aspherical geometry; (iii) the difficulty to incorporate mesh

refinement; and (iv) the inherent computational complexity and communication overheads. The last issue is

due to the fact that STM require a Legendre transformation in longitude, based on a non-uniform dis-

tribution of Gauss points [22].
All the methods previously mentioned solve the elastodynamic problem in the frequency domain and,

therefore, do not directly provide informations on wave propagation within the model. A number of

studies, using finite differences (FD) [23,24] or pseudo-spectral (PS) [25,26] methods have been recently

conducted toward direct numerical simulation (DNS) of seismic wave propagation in spherical Earth

models. Until now, they have been applied to rather restricted approximations, i.e., axisymmetric P and SV

[26] or SH wave propagation [23,24], thus avoiding the inherent pole problem while reducing the com-

putational requirements. The major problem in adapting these grid-based methods to arbitrary spherical

geometry is that they do not provide a uniform representation of scalar functions on a sphere. Latitude–
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longitude grids are indeed highly non-isotropic with a clustering of points near the poles that leads to severe

CFL conditions. A possible way to circumvent the pole problem is the resort to a multidomain approach, a

kind of computational divide et impera in which each domain inherits its own coordinate system [27–31].

However, in the context of FD methods, the main difficulty is to glue together the different coordinate

systems. This requires the use of composite mesh methods [32] with overlapping regions between the meshes

of each subdomain. The interpolation error and the size of the overlap regions lead to severe stability

conditions.

Moreover, FD methods, widely used in exploration seismology, suffer from grid dispersion near strong
gradients and require a large number of grid points per propagating wavelength in order to be accurate

[33,34]. Balancing the trade-off between the numerical dispersion and the computational cost turns out to

be difficult and often critical for global seismology studies. Higher order methods like PS methods allow for

a non-dispersive propagation with only a few grid points per wavelength. A maximal efficiency is obtained

when using Fast Fourier Transform but for more general boundary conditions the set of truncated Fourier

series are often replaced by algebraic polynomials of Chebychev or Legendre type [35], with the drawback

of introducing collocation points that are non-uniformly spaced. This last limitation can lead to stability

problems even though it can be partly overcome with the help of generalized coordinates [36,37]. Finally,
both FD and PS methods are based upon a strong formulation of the elastodynamic equation, and,

therefore, face severe limitations for the approximation of free-surface boundary or interface continuity

conditions. This makes these methods difficult to use in global seismology, as they fail to provide an ac-

curate solution for surface or interface wave propagation.

New DNS methods must meet several requirements in order to be adapted to global seismology: (i) an

accurate discretization of spherical and aspherical geometries; (ii) a natural approximation of surface

boundary and interface continuity conditions; (iii) an expansion of the physical variables into basis of

functions with local spatial support; (iv) an accurate conservation of energy and angular momentum for
long time propagation; and (v) a minimal numerical dispersion on both body and surface waves with a

small number of points per propagating wavelength.

The first steps toward the formulation and the parallel implementation of a new explicit spectral element

method (SEM) that satisfies requirements (i)–(v) is considered in this paper. The principal motivation for

adopting the SEM [38–40] is that it combines the geometrical flexibility of classical finite element methods

with the exponential convergence rate associated with the spectral methods. Based upon a weak variational

formulation of the elastodynamic equation, the SEM suffers from minimal numerical dispersion and allows

for a natural treatment of boundary conditions. The SEM has been shown to be very efficient for elastic
wave propagation problems within the context of regional seismology, and in particular to accurately

model surface wave propagation [41–45]. The spatial discretization is based upon Legendre polynomials

which, together with the use of a Gauss–Lobatto–Legendre quadrature, leads to a diagonal mass matrix

and a fully explicit time scheme [44], while retaining the efficient sum-factorization techniques [46].

As in the finite element method, a special care is required to allow the SEM to deal with fluid regions.

This can not be achieved by simply setting the shear modulus to zero since spurious oscillations are likely to

appear as a consequence of the incorrect discretization of the kernel of the elastic operator [47]. Fur-

thermore, the kinematic condition to be imposed at the fluid–solid boundaries would not be satisfied, since
it only involves the normal component of the displacement. A first approach to solve the problem is to use a

displacement formulation based upon lower order elements in the fluid, the coupling with the solid being

satisfied in a weak sense [47]. Another possibility is to derive a scalar wave equation for the fluid and to

force the continuity of traction and normal velocity at the fluid–solid interfaces. The fluid can be described

either by a velocity potential if the density is constant [48,49] or by a momentum potential for a varying

density [50]. Whenever self-gravitation is considered, an additional complication arises due to the presence

of gravity modes and possible convective modes in the fluid. Because of the absence of observational

evidence in the fluid outer core, these oscillations are routinely ignored when computing synthetic
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seismograms in global seismology. It should be emphasized, however, that solving the equations in the

general case is an open problem since the spectrum of the gravito-elastic operator is known to be con-

tinuous [51]. Note finally that whereas gravity and convective modes can be easily filtered out in the fre-

quency domain (they are below the gravest elastic oscillation), there is no such way to proceed in the time

domain. Our description will thus be restricted to the case of a neutrally stratified fluid.

In this paper we address the main extensions that are required for using the SEM in global seismology,

and more generally for adapting it to spherical geometry. The results presented hereafter are based es-

sentially upon the work of Chaljub [52], except for the fluid regions of the model for which we propose a
discretization in terms of a velocity potential that generalizes the work presented by Komatitsch and Tromp

[50] to the self-gravitating case. An alternative strategy to model the fluid regions can be found in [53],

where the coupling of the SEM with a modal solution is presented. This approach is nevertheless restricted

to spherical geometry, the sole case for which a semi-analytical solution can be derived.

The organization of the paper is as follows. A brief description of the elastodynamic equation that

govern the wave propagation within a spherical, elastic, isotropic medium initially in a hydrostatic state of

equilibrium under gravity loading, is outlined in Section 2. The effects of gravity are considered within the

Cowling approximation [54] and the fluid is described in terms of the velocity potential. We refer to [50] and
the references therein for the incorporation of additional effects such as anisotropy and attenuation. A

hybrid variational formulation of the problem is then addressed in Section 3. The main motivation for

adopting a hybrid approach is to ensure that non-conforming domain decomposition and mesh refinement,

following the mortar element method [55,56], is a particular case of the general formulation. Such mesh

refinement flexibility is crucial for an accurate representation of localized heterogeneities within a global

model while reducing the computational cost in contrast to more conventional non-uniform meshes, like

the one used in [50]. Matters of geometrical discretization, which is a key issue for extending the SEM to

spherical geometry, are discussed in the first part of Section 4 in which a paving technique of a sphere using
hexahedra is presented. All the transformations involved are defined analytically and, in contrast with FD

methods, the SEM provides a natural setting for handling the connections between the different regions of

the mesh. A spectral element discretization, associated with the hybrid variational formulation, is detailed

in the remaining part of Section 4. Section 5 is dedicated to the formulation of an explicit predictor–cor-

rector solver for the resulting discrete constrained algebraic system. It is shown that the computational cost

induced by the non-conforming discretization becomes rapidly marginal as the size of the problem in-

creases, which makes this formulation effective for the resolution of global scale wave propagation in

heterogeneous spherical models. In Section 6, we confine our attention to the parallel implementation and
the scalability of the method with respect to distributed memory architectures. Finally, selected numerical

applications are developed in Section 7 which demonstrate the performance and the potentialities of the

method.

2. Equations of motion

In this section we recall the equations of elastic wave propagation in a spherically symmetric, non-ro-
tating, elastic, and isotropic medium. The equations are obtained by a first-order adiabatic perturbation

around a reference state of hydrostatic equilibrium, and the effects of gravity are accounted for within the

Cowling approximation. The physical meaning of this approximation is to consider that the mass fluctu-

ation caused by seismic waves remains localized, and, therefore, does not affect the gravitational field.

Whenever this assumption breaks down, the effects of self-gravitation must be accounted for and the

perturbation of the gravitational potential must be considered. Note that since this potential is defined over

the whole space R3, the issue of solving the equations of motion in an unbounded domain has then to be

considered.
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First we start with a description of the geometry and fix some notations that will be used throughout the

paper. In the reference configuration, we consider a sphere which is identified to the open subset X, its

surface is labeled oX and �XX denotes the closed subset X [ oX. The sphere is made of solid and fluid regions,

which we, respectively, refer to as XS and XF:

�XX ¼ �XXS [ �XXF: ð1Þ

Each region is further decomposed into a set of non-overlapping open subdomains:

�XXS ¼
SK

j¼1
�XXS

j 8j; j0 2 f1 . . . Kg XS
j \ XS

j0 ¼ ;;
�XXF ¼

SL
l¼1

�XXF
l 8l; l0 2 f1 . . . Lg XF

l \ XF
l0 ¼ ;:

ð2Þ

Whenever two solid subdomains XS
j and XS

j0 are in contact, Cj ¼ �XXS
j \ �XXS

j0 stands for their common interface.

Similarly,Cl denotes the boundary between the two neighboring fluid subdomainsXF
l andXF

l0 . We refer toRSS

as the union of the K internal solid–solid boundaries, to RFF as the collection of the L fluid–fluid boundaries,

and RSF stands for the set of solid–fluid boundaries. The union of all interfaces, including the outer surface, is
labeled R and is such that: R ¼ RSS [ RFF [ RSF [ oX. For the sake of simplicity we only consider the case

where all the interfaces are spherical, so that each subdomain is either a sphere or a spherical shell.

2.1. Solid regions

Under those assumptions, solving the problem of elastic waves propagation consists in finding the

displacement vector field uðx; tÞ for x 2 XS and t 2 ½0; T  such that (see, for example [3, p. 102]):

q€uu�r � TðuÞ þ r � ðquÞf gg�r qu � gð Þ ¼ f; ð3Þ

where TðuÞ is the Lagrangian incremental stress tensor, q is the mass density, g is the acceleration due to

gravity and f is a generalized body force. In Eq. (3) a dot over a symbol implies time derivation, while rs

and r � s, respectively, denote the gradient and the divergence of a given tensor field s.

The incremental stress tensor TðuÞ is linearly related to the infinitesimal strain tensor eðuÞ ¼ 1
2
ruþrtuð Þ

through Hooke�s law:

TijðuÞðx; tÞ ¼ !ijklðxÞeklðuÞðx; tÞ 8x 2 XS; 8t 2 ½0; T ; ð4Þ

where the fourth-order tensor ! controls the velocity of propagating waves in the medium. Then, because

the pre-stress is hydrostatic, ! possesses the classical symmetries:

!ijkl ¼ !ijlk ¼ !jikl ¼ !klij: ð5Þ

Furthermore, if we assume an isotropic body then ! can be fully represented by its two Lam�ee�s parameters

k and l:

!ijkl ¼ kdij þ lðdikdjl þ dildjkÞ; ð6Þ

where d is the Kronecker delta.

2.2. Fluid regions

We consider an inviscid fluid which is initially in a state of hydrostatic equilibrium. Let q and p, re-
spectively, stand for the mass density and the pressure of the fluid in this reference configuration, with the

density being continuous throughout the fluid. We refer to the Eulerian adiabatic perturbations of q and p
as q0 and p0, the latter being related to the Lagrangian perturbations of pressure dp and density dq via:
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dp ¼ p0 þ qu � g; ð7Þ

dq ¼ q0 þ u � rq; ð8Þ

where u is the displacement perturbation and g is the acceleration of gravity. The Lagrangian perturbations

of pressure and density are related by:

dq ¼ 1

c2
dp; ð9Þ

where c is the sound speed in the fluid. The equivalent relation between the Eulerian perturbations writes:

q0 ¼ 1

c2
p0 � u � s; ð10Þ

where s is the ‘‘stratification’’, or Schwarzschild vector, that characterizes the behavior of the fluid to

changes in density:

s ¼ rq � q
c2
g: ð11Þ

It is more common to describe the stratification of the fluid through the so-called Brunt–V€aais€aal€aa or
buoyancy frequency N :

N 2 ¼ 1

q
s � g: ð12Þ

Whenever N (or jjsjj) is non-zero, buoyancy acts as an additional restoring force that causes gravity or

convective oscillations to occur in the fluid. As discussed previously, we restrict our study to the case of a

neutrally stratified fluid, that is to N ¼ 0. This implies that the gravity vector must satisfy:

g ¼ c2

q
rq; ð13Þ

and that Eq. (10) takes the form:

q0 ¼ 1

c2
p0: ð14Þ

To derive the wave equation, we start with the first-order accurate continuity equation [57,58]:

_qq
0 þ r � qvð Þ ¼ 0; ð15Þ

where v is the velocity field in the fluid. Then, neglecting mass redistribution as well as any source term in

the fluid, the conservation of momentum writes:

q _vv ¼ �rp0 þ q0g: ð16Þ

Taking the value of g and q0, respectively, from (13) and (14), we obtain:

_vv ¼ �r 1

q
p0

� �
: ð17Þ

This last equation ensures that the velocity field v remains irrotational with time, consistent with the as-
sumption that convection is neglected. We then introduce the velocity potential U which is defined as:

v ¼ �rU: ð18Þ
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Considering the momentum Eq. (17) and the assumption that the fluid is initially at rest, yields the fol-

lowing relation between the velocity potential and the Eulerian pressure perturbation:

p0 ¼ q _UU: ð19Þ

Finally, plugging (18) and (19) into (15) and using (14) yields the scalar wave equation for the velocity

potential:

1

c2
€UU ¼ 1

q
r � qrUf g: ð20Þ

2.3. Initial and boundary conditions

The equations of motion (3) and (20) have to be completed with both initial and boundary conditions.

The initial conditions are set consistently with the assumption that the medium is at rest in the reference

configuration:

uðx; 0Þ ¼ _uuðx; 0Þ ¼ 0 8x 2 XS; ð21Þ

Uðx; 0Þ ¼ _UUðx; 0Þ ¼ 0 8x 2 XF: ð22Þ

We must then specify the kinematic and dynamic conditions that hold on the different interfaces of the

medium. First, recall that for the solid subdomains to remain in welded contact, the displacement vector
must be continuous across internal solid–solid boundaries:

½juðx; tÞjRSS
¼ 0 8x 2 RSS; 8t 2 ½0; T ; ð23Þ

where ½j jC stands for the jump operator across the oriented surface C.
Then, because tangential slip is allowed on every interface where a fluid is involved, only the normal

component of the velocity vector has to be continuous there:

½jvðx; tÞjRSF[RFF
� nðxÞ ¼ 0 8x 2 RSF [ RFF; 8t 2 ½0; T ; ð24Þ

with n being the unit normal to the interface. Note that the normal displacement is also continuous as a

consequence of the initial condition (21).

Finally, the traction vector must be continuous across every interface, according to the action–reaction
principle. On the internal boundaries between solid subdomains, this reads:

½jTðuÞðx; tÞ � nðxÞjRSS
¼ 0 8x 2 RSS; 8t 2 ½0; T ; ð25Þ

where n stands for the unit normal to any interface in RSS. For the solid–fluid boundaries, the continuity of

traction takes the form:

TðuÞðx; tÞ � nðxÞ ¼ �dpnðxÞ 8x 2 RSF; 8t 2 ½0; T ; ð26Þ

where dp is defined by (7) and n stands for the unit vector normal to the interface and pointing outward the

solid region. Eq. (26) tells that the deviatoric (shear) stress in the solid must vanish when approaching the

solid–fluid interfaces, since the fluid is assumed to be inviscid. On the fluid–fluid boundaries, the coun-

terpart of (25) is:

½jdpðx; tÞ jRFF
¼ 0 8x 2 RFF; 8t 2 ½0; T : ð27Þ
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From the definition of both dp (7) and U (19), and since the density, the gravity and the normal dis-

placement are continuous throughout the fluid, this is also equivalent to:

½j _UUðx; tÞjRFF
¼ 0 8x 2 RFF; 8t 2 ½0; T : ð28Þ

Eventually, as we neglect the action of the region exterior to X, the surface of the sphere acts as a free

boundary. Assuming that the free surface is on top of a solid region, the following conditions applies:

TðuÞðx; tÞ � nðxÞ ¼ 0 8x 2 oX \ �XXS; 8t 2 ½0; T : ð29Þ

3. Hybrid variational formulation

In this section we present a variational formulation in space of the equations of motion (3) and (20),

where the continuity of both the displacement between solid subdomains and the velocity potential between

fluid subdomains is expressed in a weak sense. This framework will be further used when adapting the SEM

to deal with non-conforming interfaces, as those introduced during the meshing process. The matching
between solid and fluid regions is imposed in a strong form and relies on the explicit forcing of the con-

tinuity of traction and normal velocity.

Let H 1ðOÞ denote the space of scalar fields which, together with their first derivatives, are square inte-

grable on the open set O, and let H1ðOÞ stand for the space of vector fields which components are in H 1ðOÞ.
The space of admissible displacementsVS is defined in the solid regions as the product of these local spaces:

VS ¼
YK
j¼1

H1ðXS
jÞ: ð30Þ

Note that the continuity between subdomains is not enforced in the definition of VS. Let indeed Cj be
an inner solid–solid boundary and v be an admissible displacement field, then v can be defined on Cj as

the trace of either vj
XS

j
or vj

XS
j0
, where vj

XS
j
(resp. vj

XS
j0
) stands for the restriction of v to XS

j (resp. XS
j0 ). We

rather consider the continuity conditions for the displacements as additional constraints, which are

expressed through the introduction of a set of Lagrange multipliers. The multipliers span the dual space

of displacements on the solid–solid interfaces:

MS �
YK
j¼1

H�ð1=2Þ Cj

� �
: ð31Þ

In the fluid regions, we similarly define the space of admissible potentials as:

VF ¼
YL
l¼1

H 1ðXF
l Þ; ð32Þ

and we introduce another set of Lagrange multipliers to account for the continuity of the velocity potentials

throughout the fluid:

MF �
YL
l¼1

H�ð1=2Þ Cl

� �
: ð33Þ

The weak form associated to the gravito-elastodynamic equations can be set under a primal hybrid for-

mulation [59] which consists, 8t 2 ½0; T , in finding ut; k
S
t

� �
2 VS �MS in the solid regions, and Ut; k

F
t

� �
2 VF �MF in the fluid regions such that:

464 E. Chaljub et al. / Journal of Computational Physics 187 (2003) 457–491



8 v; lS
� �

2 VS �MS and 8 W; lF
� �

2 VF �MF : ð34Þ

q€uut; v
� �

XS
þASðut; vÞ þ CSð _UUt; vÞ þBSðv; kS

t Þ ¼ f; vð ÞXS ; ð35Þ

BSðut; lSÞ ¼ 0; ð36Þ

q
c2

€UUt;W
� �

XF
þAFðUt;WÞ þ CFð _uut;WÞ þBFðW; kF

t Þ ¼ 0; ð37Þ

BFð _UUt; l
FÞ ¼ 0; ð38Þ

with the initial conditions:

u0; vð ÞXS ¼ ð _uu0; vÞXS ¼ 0; ð39Þ

and

U0;Wð ÞXF ¼ ð _UU0;WÞXF ¼ 0: ð40Þ

In the previous equations, ð�; �ÞXS and ð�; �ÞXF , respectively, denote the L2 scalar products in XS and XF, and vt
stands for the snapshot at time t of any given space-and-time vector field v.

AS is the bilinear form related to the gravito-elastic operator in the solid regions. It is obtained by

dotting the three last terms on the left-hand side of Eq. (3) by an admissible displacement v, then integrating
by parts to retain the volume term. It can be written as [60]:

ASðu; vÞ ¼
Z

XS

eðuÞ : ! : eðvÞdX þ
Z

XS

qSym ðv � gÞr � uf � u � rðv � gÞgdX; ð41Þ

where the colon indicates a double tensorial contraction and Symff ðu; vÞg ¼ 1
2
f ðu; vÞ þ f ðv; uÞð Þ. The first

integral in (41) is related to the elastic response of the medium while the second term accounts for gravity.

After integrating by parts, an additional surface term arises which involves the traction at both the free

surface and the fluid–solid boundaries. The former is set to zero, consistently with the free traction con-
dition (29), while in the latter the normal traction in the solid is replaced by the pressure of the fluid side,

according to (26). This substitution yields the coupling operator CS:

CSð _UU; vÞ ¼
Z

RSF

qF
_UU

�
þ u � g

�
v � ndC; ð42Þ

where qF is the density of the fluid side and n is the unit normal to the interface which points outward of the

solid region.
Finally, the bilinear form BS combines the jumps of displacement together with the tractions on the

boundaries between subdomains:

BSðu;lSÞ ¼
XK
j¼1

Z
Cj

ujð � uj0 Þ � lS
j dC; ð43Þ

where uj and uj0 denote the traces of ujXS
j
and ujXS

j0
over Cj. The definition of BS makes it clear that Eq. (36)

expresses the continuity of displacement across each interface Cj in a weak sense, i.e., according to the
duality between H1=2 Cj

� �
and H�ð1=2Þ Cj

� �
. Note that the displacement field obtained by solving Eqs. (35)
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and (36) is globally continuous, that is ut 2 H1ðXSÞ. Furthermore, the Lagrange multiplier kS
t is nothing but

the related traction on the solid–solid interfaces: kS
t ðxÞ ¼ TðutÞ � nðxÞ 8x 2 RSS.

In the fluid regions, dotting the right-hand side of the scalar wave equation (20) and integrating by parts

yields a volume term, from which we define the bilinear form AF:

AFðU;WÞ ¼
Z

XF

qrU � rWdX; ð44Þ

and a surface integral in which the normal derivative of the velocity potential is replaced by the normal
velocity of the solid side to account for (24):

CFð _uu;WÞ ¼
Z

RSF

qF _uu � nWdC; ð45Þ

with n being the unit normal to the interface which points outward of the fluid.

Lastly, the bilinear form BF combines the two dual variables U and lF on the fluid–fluid interfaces:

BFðU; lFÞ ¼
XL
l¼1

Z
Cl

Ulð � Ul0 ÞlF
l dC: ð46Þ

Note again that the continuity of the velocity potential across the fluid subdomains is expressed in a weak

sense by (38). Furthermore, solving Eqs. (37) and (38) yields a globally continuous potential Ut and a

Lagrange multiplier lF, which appears as the normal momentum on the boundaries between the fluid

subdomains: lF
t ðxÞ ¼ qrUt � nðxÞ 8x 2 RSF.

4. Spectral element approximation

This section deals with a spectral element approximation to elastic wave propagation in spherical ge-

ometry. The method is based upon a Galerkin approximation of Eqs. (35)–(38), which is built by following

a three-steps procedure. First a geometrical discretization is performed, which consists in paving the sphere

into hexahedral elements. Second a functional discretization for the spaces of admissible displacements,

potentials and Lagrange multipliers is provided, which naturally relies on the sphere decomposition. Third
a numerical approximation is applied to evaluate the integrals present in the variational formulation. Once

completed, the spatial approximation yields a system of ordinary differential equations in time, which is

eventually solved by a finite difference scheme.

4.1. Geometrical discretization

The building of a mesh is a classical issue for any numerical method dealing with spherical geometry.

Many efforts have consequently been devoted to this subject for the study of global processes such as

atmospheric and oceanic circulation, or convection in the Earth�s mantle and outer core. However, contrary

to these examples in which the space domain is either a 2-sphere or a 3D spherical shell, modeling seismic

wave propagation requires to tile an entire sphere.

The use of the classical SEM puts the additional constraint that the spherical grid must be built with
hexahedra. Furthermore, two requirements should be fulfilled by the final mesh. First, all the spherical

interfaces of the model should be explicitly discretized, henceforth allowing for abrupt radial variations of

the elastic parameters to be considered. Second, the spherical mapping should be as regular as possible in

the sense that the elements of the mesh are not too distorted and the grid-points sampling is uniform.
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To satisfy the first constraint, we must be able to tile a 2-sphere with quadrangles. A classical approach

for defining such a mesh is to use the central (also called gnomic) projection of a cube onto its circumscribed

sphere. Such a mapping, known as the ‘‘cubed sphere’’ transformation or the ‘‘cubic-gnomic’’ projection,

has been introduced by Sadourny [27] and used by Ronchi et al. [31] to define a finite difference approx-

imation of partial differential equations in spherical geometry. It has also been used in a spectral element

approach of the shallow water equations on the 2-sphere [61].

Through the cubed sphere transformation, the sphere is decomposed into six regions which are iso-

morphic to the six faces of a cube. A spherical grid can further be obtained by projecting a quadrangular
mesh of the surface of the cube back to the sphere. Fig. 1 shows the result of transporting a 16� 16

structured mesh from one face of the cube onto the sphere. As a consequence of the gnomic projection, any

straight line drawn on a face of the cube is transformed into a geodesic on the sphere. The 2D paving

obtained on the sphere has the desired property of being quite uniform, since the deformation rate among

each of its faces does not exceed 30%.

The process of building a hexahedral spherical mesh is depicted in Fig. 2. First, from the discretization of

the 2-sphere it is straightforward to build a 3D mesh inside a spherical shell, by radially connecting the

quadrangles between two concentric cubed spheres. Once each spherical boundary has been provided with
its own discretization, we introduce a progressive transition from the deepest interface to a uniform cube

that lies at the center of the mesh. The analytic expression for this transformation is given in Appendix A.

The 3D mesh obtained from the construction described so far suffers from a non-uniform grid-points

sampling with depth. This drawback, which is intrinsic to the process of connecting concentric spheres, causes

the lateral size of each element to decrease proportionally to the radius. As a consequence, the sampling of the

wavelengths, which is the critical ratio with regard to the accuracy of the method, is also an increasing

function of depth. Note that this effect will be even more pronounced when seismic velocities increase with

depth, as they do in planetary interiors.We want to circumvent such a non-uniform property for two reasons.
First, the presence of over-sampled regions in the model would imply unnecessary calculations and memory

storage. Second, any conditionally stable scheme used for time marching would be penalized by the smallest

distance between grid-points when imposing the time step to satisfy the CFL condition. To overcome this

difficulty, we allow for a possible coarsening of the grid at a given depth. By doing so, we implicitly break the

property of ‘‘geometrical conformity’’ following which two neighboring elements have to share an entire

edge, or an entire face. The resulting 3D mesh is said to be geometrically non-conforming, and we hereafter

refer to the boundaries between non-matching grids as the ‘‘non-conforming interfaces’’.

Fig. 1. One face of the ‘‘cubed sphere’’ is shown on the left. It is obtained by a gnomic projection of a 16� 16 quadrangular grid from

one face of a reference cube to its circumscribed sphere. Contour lines of the surface area density within the grid is shown on the right

plot. Exact values range from 0:71 on the border to 1 at the center of the face.
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4.2. Functional discretization

Following the paving strategy explained above, each solid subdomain XS
j is decomposed into a set, which

we denote sj, of nj hexahedral elements:

sj ¼ sej
� �

e¼1;nj
; �XXS

j ¼
[nj

e¼1

�ssej: ð47Þ

The hexahedra are obtained from a reference unit cube, by an invertible local mapping: sej ¼ Fe
jðK3Þ, where

K ¼ ½�1; 1. Note that the different mappings must be compatible in order to preserve the geometrical
conformity within the subdomains. The displacements are then approximated by continuous fields on each

solid subdomain, which are defined by transporting tensorized polynomials from the reference unit cube

onto the elements of the mesh:

VS
h ¼ vh 2

YK
j¼1

C0ðXjÞ
� �3

; vhjsej �Fe
j 2 PN ðK3Þ

� �3
; 8e

(
¼ 1; . . . ; nj

)
: ð48Þ

In the last expression, vhjsej is the restriction of vh to sej, ‘‘�’’ denotes the functional composition and PN

stands for the set of polynomials of degree less or equal to N over each direction of space.

Fig. 2. Building of a 3D SEM mesh inside a sphere with a given spherical inner boundary C. Both C and the surface of the sphere oX
are discretized via the cubed sphere transformation, then radially connected to fill the 3D spherical shell (a). A transition from C to a

central cube C is then performed to fill the inner part of the mesh (b). The 3D spherical grid obtained by adding (a) and (b) is shown in

(c). To avoid the clustering of grid-points with depth, the central region is discretized with a twice coarser grid (d). The interface C
which is displayed as a bold white line is said to be non-conforming. In each of the 3D plots, a cubic block is removed to permit a view

into the volume.
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The approximated space for the velocity potentials in the fluid is defined in the same way:

VF
h ¼ Wh 2

YL
l¼1

C0ðXlÞ; Whjsel �Fe
l 2 PNðK3Þ; 8e

(
¼ 1; . . . ; nl

)
; ð49Þ

with sel standing for the hexahedral elements paving the fluid subdomains.

Similarly, the Lagrange multipliers are approximated by piece-wise polynomials based upon the 2D tiling
of the non-conforming spherical interfaces. To fix the notations, recall that after the meshing process, every

non-conforming solid–solid interfaceCj 2 RSS inherits two quadrangulations from sj and sj0 . Let for example

sj stand for either sj or sj0 , then sj provides Cj with a quadrangulation that we shall denote tj. Each of the nj

quadrangles in tj is obtained from a reference unit square through an invertible 2Dmapping: tej ¼ Ge
jðK2Þ. In

this paperwe have chosen sj to be the finer grid between sj and sj0 , although this is not a restriction imposed by

the mortar element method.

A special care must then be taken to define the discrete space for the Lagrange multipliers. The poly-

nomial order used in the approximation indeed determines the well-posedness of the saddle-point problem
arising from the discretization, through the satisfaction of the so called LBB condition. Classical numerical

analysis dedicated to non-matching grids in the finite element framework, like the FETI method [62] or the

mortar element method [55,56,63], suggest that the polynomial degree of the dual variables (the multipliers)

should be decreased compared to that used for the primal variables (the displacements in the solid or the

velocity potentials in the fluid) in order to satisfy the LBB criterion. However, in the particular case where

the non-conforming interfaces are spherical (or more generally closed), an equal-order interpolation yields

a well-posed approximation. We thus define the discrete space of multipliers as:

MS
h ¼ lS

h 2
YK
j¼1

C0ðCjÞ
� �3

; lS
hjtej � Ge

j 2 PN ðK2Þ
� �3

; 8e
(

¼ 1; . . . ; nj

)
; ð50Þ

and

MF
h ¼ lF

h 2
YL
l¼1

C0ðClÞ; lF
h jtel � Ge

l 2 PNðK2Þ; 8e
(

¼ 1; . . . ; nl

)
: ð51Þ

Now, for the discrete spaces to be explicitly constructed, the sets PN ðK3Þ and PN ðK2Þ must be provided with

polynomial basis. We start by introducing the so-called Gauss–Lobatto–Legendre (hereafter denoted GLL)

points, which are defined on the unit interval K as the zeroes of ð1� x2ÞL0N ðxÞ, where LN ðxÞ is the Legendre
polynomial of degree N . Note that the GLL points include the extremities of the unit segment K, which is a

desirable property regarding the imposition of the continuity of displacements and tractions between the

elements. One then chooses the ðN þ 1Þ Lagrange interpolants to the GLL points in order to define a poly-

nomial basis forPNðKÞ. Finally, a simple tensorization rule is applied to generate the higher dimension spaces
PNðK2Þ and PN ðK3Þ.

To achieve the spatial discretization, the integrals present in Eqs. (35)–(38) are split up into the hexa-

hedra and quadrangles of the spherical mesh. Thanks to the local mappings Fe
j, F

e
l , G

e
j and Ge

l , the

elementary integrals can be pulled back to the reference square and cube, where the unknowns and

test-functions can be replaced by their polynomial expansions. A numerical quadrature involving the GLL

points is then applied to evaluate the integrals on the reference domains K2 and K3.

The procedure outlined above, which is detailed in Appendix B, yields the following system of ordinary

differential equations in time:

MSaþ CS
_UU þ KSdþ BtSk

S ¼ F; ð52Þ

BSd ¼ 0; ð53Þ
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MF
€UU þ CFvþ KFU þ BtFk

F ¼ 0; ð54Þ

BF
_UU ¼ 0; ð55Þ

where d, v, and a are the displacement, velocity, and acceleration vectors in the solid, kS is the traction on the
solid–solid boundaries, U is the velocity potential in the fluid and kF is the Lagrange multiplier on the non-

conforming fluid–fluid interfaces.M is the mass matrix, K is the stiffness matrix, C is the solid–fluid coupling

matrix and B is the matrix that computes the jump of any discrete cinematic field across the non-conforming

interfaces. Each of the previousmatrices has a subscript to indicate onwhich region (solid or fluid) it operates.

In the remaining of the paper, those subscripts will be dropped out whenever there is no possible confusion.

Note that the jump matrices BS and BF only act on the grid-points which are localized on the non-

conforming interfaces. In particular, the equations to be solved at the degrees of freedom interior to the

subdomains are obtained by setting B ¼ 0 in Eqs. (52) to (55). An interesting property of the formulation
with Lagrange multipliers is that the mass matrices MS and MF remain diagonal, as for the geometrically

conforming case. This is made possible because M does not account for the contact condition between

subdomains across the non-conforming interfaces.

5. Time evolution

In this section we present an acceleration driven finite-difference scheme that allows for advancing the
discrete equations forward in time.

As a starting point, we find more convenient to express the continuity across non-conforming interfaces

in terms of the second time derivative of the displacements in the solid and of the potentials in the fluid. We

thus replace Eqs. (53) and (55) with:

BSa ¼ 0; ð56Þ

BF
€UU ¼ 0: ð57Þ

We then introduce a discretization of the time interval 0; T½  into segments of length Dt. For a given integer

n, tn ¼ nDt denotes the nth time step and the subscript n is used to indicate the value of a given vector at time

tn. We start with the initial conditions:

Ffn¼0g ¼ dfn¼0g ¼ vfn¼0g ¼ afn¼0g ¼ kS
fn¼0g ¼ 0; ð58Þ

Ufn¼0g ¼ _UUfn¼0g ¼ €UUfn¼0g ¼ kF
fn¼0g ¼ 0; ð59Þ

and we assume that the different fields satisfy Eqs. (52), (54), (56), and (57) at time tn. Now, for the sake of

conciseness the time marching algorithm is presented for the solid regions only. The time evolution for the

fluid regions is simply obtained by changing the notations. The issue of coupling the solid and the fluid

regions is postponed to the end of this section.

To move forward in time, we use a Newmark finite difference scheme which is based upon the following

modified Taylor expansion for the displacement and velocity [64]:

dnþ1 ¼ dn þ Dtvn þ Dt2
1

2

��
� b

�
an þ banþ1

�
; ð60Þ

vnþ1 ¼ vn þ Dt ð1½ � cÞan þ canþ1; ð61Þ
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with b and c being two arbitrary scalars. The Newmark scheme is further included into a predictor–mul-

ticorrector process as used by Komatitsch and Vilotte [44], but modified to take into account the treatment

of the non-conforming interfaces. The different steps of the algorithm are hereafter expanded.

First, the displacements and velocities are predicted by taking the explicit terms in the sequences (60) and

(61):

d
ð0Þ
nþ1 ¼ dn þ Dtvn þ Dt2

1

2

�
� b

�
an; ð62Þ

v
ð0Þ
nþ1 ¼ vn þ Dtð1� cÞan; ð63Þ

where the superscript between brackets stands for the correction index (0 here). The predicted values of the
accelerations and tractions are, respectively, taken to be zero. An acceleration field is then computed by

solving the momentum equation. For the grid-points that are not located on the non-conforming interfaces,

this reads:

a
ðiþ1Þ
nþ1 ¼ M�1 Fnþ1

h
� Kd

ðiÞ
nþ1

i
; ð64Þ

whereas on the interfaces, one has to solve the coupled system:

Ma
ðiþ1Þ
nþ1 þ Btkðiþ1Þ

nþ1 ¼ Fnþ1 � Kd
ðiÞ
nþ1; ð65Þ

Ba
ðiþ1Þ
nþ1 ¼ 0: ð66Þ

Taking the value of the acceleration from (65) and replacing it into (66), we obtain a formulation involving

the traction only:

BM�1Btkðiþ1Þ
nþ1 ¼ BM�1 Fnþ1

h
� Kd

ðiÞ
nþ1

i
: ð67Þ

Note that solving the previous equation formally requires the knowledge of the 2D symmetric definite

positive matrix ðBM�1BtÞ�1
, i.e., a modified mass matrix that accounts for the non-matching grids. This

additional resolution step can be performed using a conjugate gradient algorithm with a simple diagonal
preconditioner. Then, using the momentum Eq. (65) yields the acceleration field on the non-conforming

interfaces:

a
ðiþ1Þ
nþ1 ¼ M�1 Fnþ1

h
� Kd

ðiÞ
nþ1 � Btkðiþ1Þ

nþ1

i
: ð68Þ

From Eqs. (64) and (68) the displacements and velocities can finally be corrected:

v
ðiþ1Þ
nþ1 ¼ v

ð0Þ
nþ1 þ Dtcaðiþ1Þ

nþ1 ; ð69Þ

d
ðiþ1Þ
nþ1 ¼ d

ð0Þ
nþ1 þ Dt2baðiþ1Þ

nþ1 : ð70Þ

Note that the correction phase only involves the acceleration vector, which by construction, satisfies the

continuity constraint (66). The iterative process outlined above thus leads to continuous displacement and

velocity fields.

Stability and conservation properties of the scheme as a function of the Newmark parameters b and c
can be found in [64]. A particular example which has been used in this paper is the explicit central finite-
difference method (obtained for b ¼ 0 and c ¼ 1=2), which is of second order, conditionally stable and
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insures an exact conservation of the total angular momentum. The stability is controlled by the value of the

Courant number g, which is defined as g ¼ DtMax a=Dr½ , where a is the compressional wave speed and Dr is
the grid spacing. For the numerical tests presented hereafter, stability was enforced provided that g6 0:3.

5.1. Solid–fluid coupling

To couple the solid with the fluid regions requires an additional iterative treatment in order to impose

the continuity of both pressure and normal velocity. This coupling is briefly discussed here, but the reader is

referred to [49] and the references herein for more details.

For the sake of simplicity let us assume that all the interfaces are conforming. Starting from the pre-

dicted values of d; v; U, and _UU, one gets the acceleration in the solid regions by solving:

a
ðiþ1Þ
nþ1 ¼ M�1

S Fnþ1

h
� KSd

ðiÞ
nþ1 � CS

_UUðiÞ
nþ1

i
: ð71Þ

The velocity field in the solid is then updated using (69), and this new value is used to solve for €UU in the
fluid:

€UUðiþ1Þ
nþ1 ¼ M�1

F

h
� KFU

ðiÞ
nþ1 � CFv

ðiþ1Þ
nþ1

i
: ð72Þ

From (72), the first time derivative of the potential can be corrected assuming a relation similar to (69) and

it can be injected back into Eq. (71). As noted in [49], this staggered scheme converges after a few number of

iterations, typically two for the examples presented in this paper.

5.2. Computational cost

Compared to the geometrically conforming case, the additional resolution step (67) has to be performed

to account for the contact conditions between subdomains. Since this is achieved by a conjugate gradient

algorithm, the cost of this operation scales as the square of the number of points lying on the the non-

conforming interfaces. Let Mh stand for the �horizontal� number of elements used to fill one face of the

cubed sphere (for example Mh ¼ 16 in Fig. 1), and let Mv stand for the number of element layers between

the surface of the sphere and the central cube. The cost of the conjugate gradient resolution scales as
N 4 �M2

h , assuming that the polynomial order is ðN � 1Þ. This is to be compared to the overall cost of the

algorithm which is dominated by the product with the stiffness matrix K and scales as N 4 � ðMhÞ2 �Mv [44].

The relative cost of the non-conforming resolution will, therefore, become marginal as the size of the

problem is increased. It will actually scale linearly with the dominant period of the propagating waves.

6. Parallel implementation

The ability of the numerical method presented so far to handle large scale problems is closely related to

its properties regarding parallelization. As many finite element method, the SEM yields algorithms that are

naturally suited for SIMD implementation on modern parallel calculators, the distribution of tasks being

only related to the decomposition of the physical domain. In this section we present a load-balanced

partition of the spherical mesh onto a given set of processors and describe the communications required to

propagate information within the mesh.

As detailed previously, the spherical mesh is made of a central cube (region 7) which is connected to six

external regions (regions 1–6), each region being provided with its own mesh of elements (see Fig. 3). The
simplest way for decomposing the global mesh onto a given set of p processors while preserving load
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balance is thus to act sequentially on the seven blocks. Note that the strategy used to decompose an external

region can be applied to the five others since they are identical to a rotation. On the contrary, the central

cube is a particular subset of the mesh which is filled with a number of elements that can differ from the one

used in the external regions. Despite this difference, the load attributed to each processor can be easily
balanced since each region of the mesh is topologically equivalent to a cube. As an example, Fig. 4 shows a

Fig. 3. Schematic view of the topology of the spherical mesh. The central cube (region 7) shares a common face with each of the 6 first

regions. The neighboring relations between regions 1 and 6 are not shown on the picture.

Fig. 4. The top left figure shows the decomposition of the external regions (regions 1–6) onto a set of 16 processors. The remaining

figures describe the 3-steps procedure needed to perform the assembly process in the six external regions. Each step is a closed path

along the cube�s surface which involves the 4 regions whose numbers have been highlighted. The numbering of the subdomains is such

that a processor never communicates to itself during the entire operation. In each figure, the regions are represented through a spread

view of the 6 faces of a cube with the first region being arbitrarily chosen at the center.
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decomposition of the first six regions onto a set of p ¼ 16 processors. Any given external region is cut into

16 vertical slices that extend from the surface of the sphere to the surface of the central cube. The inner cube

is further partitioned into 64 regular blocks (not shown on the figure) so that the 2D pattern obtained on

the faces of the cube coincide with the slices coming from the external regions. Consequently, each pro-

cessor is in charge of six subdomains pertaining to the external regions plus 4 subdomains of the inner cube.

Note that the decomposition shown in Fig. 4, is only valid for a number of processors nproc which is the

square of a given integer, that is nproc ¼ n2. In particular, any number of processors which is an even

power of two can be used. The generalization to nproc being an odd power of two can be easily performed
by separating the first three external regions from the last three. Let indeed p be an even integer, then to

split the grid onto nproc ¼ 2ðpþ1Þ processors one would first decompose the regions 1–3 onto a first set of 2p

processors and then decompose the regions 4–6 onto a second set of 2p processors. Applying the same

strategy to the central cube leads to a domain decomposition algorithm well suited to most of the existing

parallel computers.

Once the domain decomposition of the sphere has been performed, the processors must communicate to

exchange the informations required by neighboring elements. These communications occur when the local

expressions of the vector fields involved in the time marching algorithm need to be assembled. The assembly
procedure in the spherical mesh is first performed at the region level. Each processor starts with a local as-

sembly within the subdomains it is in charge of, and this step requires no communication. We then make a

distinction between the central cube (region 7) and the remaining external regions. In region 7, we use a

classical assembly process designed for a structured cube. This step requires three send-get operations to

exchange information in the three directions of space (see, e.g. [65]). The assembly phase in the first six regions

is based upon the particular topology arising from the use of the cubic-gnomic projection. Recall indeed that

the neighboring relations between the external regions goes the sameway as between the six faces of a cube.We

thus use a sequence of three paths connecting the different regions to ensure a global communication scheme,
as shown in Fig. 4. During each of the three steps, all the processors have to communicate to the others. Note,

however, that the domain decomposition of the external regions is chosen in such away that a processor never

communicates to itself during the whole process. After the external regions have been assembled, theymust be

linked to the central cube. This last phase is performed sequentially for each of the six faces of the inner cube.

The total communication scheme is thus decomposed into 12 steps: 3 for the central cube, 3 for the external

regions and 6 to connect the first six regions to the last one.

The efficiency of the parallel strategy described so far has been measured through a series of experiments.

Each of these involves a constant size 3D mesh, the number of processors nproc increasing from 4 to 32.
For a given number nproc > 4 of processors, we define the relative efficiency � as:

� ¼ 4

nproc

tð4Þ
tðnprocÞ ; ð73Þ

where tðnprocÞ refers to the time needed to run one time step of the algorithm (62)–(70). The result of these

calculations is shown on Fig. 5. The observed efficiency loss is mainly due to the fact that the load at-

tributed to each processor is decreasing, thus affecting the speed-up due to vectorization. Note that the

degradation is more gentle for nproc ¼ 8 and nproc ¼ 32 compared to nproc ¼ 16. This is particular to the

domain decomposition we use when the number of processors is an odd power of two.

7. Numerical experiments

This section is devoted to the validation of the SEM in spherical geometry through 5 benchmark tests.

The first case, which consists of a homogeneous elastic sphere excited by a shallow source, aims at testing

the accuracy of the method regarding the propagation of surface waves. Two benchmarks are then pro-
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posed in order to check the implementation of a geometrically non-conforming interface: the homogeneous

elastic case and a two-layers sphere in which each layer has its own discretization. The effects of gravity are

eventually included, first in a homogeneous solid sphere and then in a model with a neutrally stratified fluid

outer core.

In each case, the normal mode solution [66–68] is taken as a reference. We systematically use a double-

couple source which time dependence is the second derivative of a Gaussian bell. The reader is referred to

[44] for a presentation of how to incorporate a double-couple source in the SEM. Except for the last ex-

ample, the central frequency of the source is f0 ’ 2:7 mHz, its maximal frequency (i.e., the frequency for
which the power spectrum equals 5% of its maximum) is fc ’ 6:75 mHz and the time onset is T0 ’ 550 s.

The radius of the sphere is chosen to be that of the Earth, i.e., 6371 km and the total simulation time, when

not mentioned explicitly, is 8640 s (i.e., 144 min).

7.1. Conforming grid

As a first experiment we consider a homogeneous elastic sphere that is excited by an explosive source

located close to the surface, at depth ’63 km. The spectral element mesh is kept conforming in order to test

the spherical transformation and the communication strategy described in the previous section.

The P -wave velocity is a ¼ 8000 m s�1, the S-wave velocity is b ¼ 6000 m s�1 and the density is

q ¼ 3000 kg m�3. The dominant P wavelength is about half the radius of the sphere and the shortest S
wavelength is about 2200 km. We use a polynomial degree N ¼ 8 and a minimal number of 5 grid-points
per wavelength following previous studies [44,69]. In this particular example, it is the Rayleigh wave that is

expected to travel with the smallest (group) velocity thus, when imposing the ‘‘5 points criterion’’ we refer

to a minimal velocity of 5000 m s�1. The global mesh is built following the method explained previously

with the size of the central cube being 2742 km. Each external region (regions 1–6) is discretized with 4

elements in the radial direction and 8� 8 elements in the tangential direction, while the central cube is filled

with 8� 8� 8 elements. The resulting 3D mesh contains a total number of 2048 elements and the smallest

length between two grid-points is about 34 km. The time step is Dt ¼ 0:5 s which corresponds to a Courant

number g ’ 0:23.
Fig. 6 shows the displacement recorded at the grid-points that stand at the surface of the sphere along

the Equator. The vertical ‘‘stripes’’ seen on the plot are due to the uneven distribution of GLL points on the

reference unit cube. Only the radial (vertical) and longitudinal components of the displacement field are

shown since (a) the explosive source does not generate toroidal energy and (b) the spheroidal energy does

not appear on the transverse component when an explosive source is considered.

Fig. 5. Parallel efficiency measured for nproc ¼ 4, 8, 16, and 32.
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The Rayleigh wave (R) is observed on both components and exhibits an elliptic polarization in the great

circle plane. Its apparent group velocity is almost constant and close to 5000 m s�1. Surprisingly, obser-

vation at a grazing angle of the Rayleigh pulse reveals no clear difference between group and phase velocity.

The Rayleigh wave is thus almost non-dispersive despite the fact that the free-surface is curved. Physical

dispersion of the Rayleigh wave is nonetheless expected to occur at frequencies lower than those considered

here [70].

The second ‘‘surface wave’’ labeled on the plot is the X wave [71], which can be viewed as the limit of

multiple reflections and conversions of P and SV waves under the surface of the sphere. For example, the
impulsive energy arrival which is clearly seen on the longitudinal component before 2700 s results from

multiple underside P reflections off the surface. Its polarization is thus tangent to the surface and its ap-

Fig. 6. Radial (left panel) and longitudinal (right panel) displacements recorded at the surface of a homogeneous elastic sphere. The

whole seismograms are displayed above, for amplitudes less than 85% of their maximal value. The almost non-dispersive Rayleigh

wave (R) is labeled on the radial component and the X wave (X) is identified on the longitudinal component. Individual normalized

traces (dashed line) and their comparison to a normal mode solution (solid line) are shown at epicentral distances D ¼ 45� (middle) and

D ¼ 135� (bottom). For each of the four plots, the top curve shows the difference between the two solutions amplified by a factor of 10.
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parent group velocity is close to the P -wave velocity in the medium. After a complete orbit around the

surface of the sphere, note that the shape of the X pulse has broadened due to the progressive excitation of

the different phases forming the X wave.

The largest amplitudes in the seismograms are due to refocusing of surface waves in the vicinity of the

antipode and the epicenter. Furthermore, each time the Rayleigh or the X wave pulses reach the antipode

or return back to the epicenter, they experience a p=2 phase shift that reverts their signal in time. This is

expected since both the epicenter and the antipode act as caustics for waves traveling on the surface of a

sphere [72,73].
The comparison of single traces to the normal mode solution is shown in the bottom panel of Fig. 6. The

residual between the SEM calculations and the reference solution is less than 1%. The largest values are

reached for the Rayleigh wave pulse which is related to the slowest velocity in the medium. In that case the

residuals are explained by a small time shift induced by the finite difference scheme which is (only) of order

two.

7.2. Non-conforming grids

7.2.1. Homogeneous sphere

This experiment is similar to the previous one except that the source depth is set to 1187 km and we

coarsen the mesh by a factor of two at a depth of 2500 km. The source is deeper than in the conforming

case since most of the energy excited by a shallower source would travel as surface waves that could hardly
‘‘feel’’ the lower part of the grid. The 3D mesh contains a total number of 1048 elements and the time step is

Dt ¼ 1 s, which is twice as big as for the conforming case while the Courant number is unchanged. The

conjugate gradient resolution of Eqs. (65) and (66) required an average of 8 iterations for each time step to

decrease the acceleration jump of about 5 orders of magnitude. For the particular mesh used in this ex-

periment, the amount of time devoted to the treatment of the non-conforming interface represents about

40% of the total calculation time. This proportion is expected to diminish for simulations at higher fre-

quency since, as mentioned previously, the ratio between the number of points on the non-conforming

interface and the total number of grid-points decreases as the frequency increases.
The displacement field recorded at the surface of the sphere is shown in the top panel of Fig. 7. Both the

Rayleigh wave and the X wave can be identified in the plot because of the low frequency content of the

source. However, a significant amount of energy is transported in the medium by body waves. The first

energy arrival which is seen at every receiver at the surface is the direct P wave which is radially polarized at

the antipode (i.e., for D ¼ �180�). The PP wave (P wave reflected at the surface) is recorded just beneath

the source at t ’ 3600 s. Higher order underside reflections off the surface (PPP , PPPP , etc.) are difficult to

identify due to interferences with the other body and surface waves. The bottom panel of Fig. 7 shows the

comparison of individual traces with the reference normal mode solution. The agreement between the two
solutions is very satisfying since their relative difference only reaches a few percents.

Fig. 8 shows the variation of kinetic and potential energy calculated at the discrete level during the

simulation. The main conversions between kinetic and potential energy occur when elastic waves are re-

flected at the surface or when surface waves interfere at the antipode. The conservation of the total energy

indicates that no spurious reflections are generated at the non-conforming interface.

The correct treatment of the non-conforming interfaces is controlled by the number of iterations in the

conjugate gradient algorithm, Niter, and by the time step used in the simulation, Dt. Both parameters control

the satisfaction of the continuity constraint (56). Whenever this constraint is violated, the non-conforming
interfaces act as secondary sources that bring energy to the whole system. The relative influence of Niter and

Dt on the total energy variation is shown on Fig. 9. We find that increasing the number of iterations by two

units is more efficient that dividing the time step by a factor of two. On the one hand, this confirms that Niter

is a key parameter that governs the accuracy of the treatment of the non-conforming interfaces. On the
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other hand, this also suggests that this treatment does not degrade the order of the time marching algo-

rithm.

7.2.2. 2-Layers elastic sphere

The aim of this experiment is to validate the implementation of a non-conforming interface that coin-

cides with a physical interface. The 3D mesh of spectral elements is the same as for the non-conforming
homogeneous case. An explosive source depth is set at 1312 km depth and a 10% decrease in both S and P
velocity is implemented at 2500 km depth across the non-conforming interface. The medium is thus formed

by a homogeneous sphere of radius 3871 km surrounded by a homogeneous spherical shell with different

Fig. 7. Radial (left panel) and longitudinal (right panel) displacements recorded at the surface of a homogeneous elastic sphere dis-

cretized with non-conforming grids. The whole seismograms are displayed above, for amplitudes less than 85% of their maximal value.

Both the Rayleigh wave R and the P wave (P) are labeled on the radial component and the X wave (X) is identified on the longitudinal

component. Individual normalized traces (dashed line) and their comparison to a normal mode solution (solid line) are shown at

epicentral distances D ¼ 45� (middle) and D ¼ 135� (bottom). The top curves show the difference between the two solutions amplified

by a factor of 10.
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elastic properties. The density is increased by a factor of 3 in the inner part of the model so that the im-

pedance contrast for both P and S waves is much larger than one. We thus expect to test the non-con-

forming implementation when strong reflections are generated at the inner boundary. Because the velocities

decrease with depth, the same time step as for the homogeneous non-conforming case (Dt ¼ 1 s) can be
used and results in an even smaller Courant number, g ’ 0:21. We found that an average number of 5

iterations in the conjugate gradient algorithm was sufficient to decrease the acceleration jump across the

non-conforming interface by 5 orders of magnitude (compared to 8 iterations in the homogeneous case).

A complete study of how the number of iterations depends on the elastic properties of the medium has

not been carried out here, but the following rule of thumb can be given. If no iterations are done, then the

non-conforming interface would act as a free, totally reflecting surface. Conversely, in a homogeneous

medium the interface must transmit all the energy from one subdomain to the other. In this case a max-

imum number of iterations, say NH , is expected during the resolution of Eqs. (65) and (66) in order to get
the correct physical behavior. A physical non-conforming interface will thus appear as an intermediate case

between these extrema and will require a number of iterations ranging between zero and NH .
Fig. 10 displays the seismograms in displacement recorded at the surface of the 2-layers sphere. As

expected the displacement field is dominated by reverberations in the outer spherical shell which give the

Fig. 8. Evolution of kinetic (Ek) and potential (Ep) energy during the last 20 min of the simulation. The total energy is conserved

indicating a correct treatment of the non-conforming interfaces in the numerical discretization.

Fig. 9. Influence of the number of iterations Niter in the conjugate gradient algorithm and of the time step Dt on the variation of the

total energy.

E. Chaljub et al. / Journal of Computational Physics 187 (2003) 457–491 479



main seismic phases (P ; PP ;R) a ‘‘ringing’’ aspect. This is also clearly seen on individual traces for epicentral

distances D ¼ 45� and D ¼ 135� (compare with bottom panel of Fig. 7). The agreement between the SEM

results and the normal mode calculations is again satisfying since the magnitude of the residuals remain

within a few percents of the reference solution.

7.3. Gravity effects

The results presented so far did not take into account the gravity terms in the expression of the

bilinear form (41). Gravity is known to play a non-negligible role on the propagation of surface waves

Fig. 10. Radial (left panel) and longitudinal (right panel) displacements recorded at the surface of a 2-layers elastic sphere discretized

with non-conforming grids. The whole seismograms are displayed above, for amplitudes less than 85% of their maximal value. Both the

Rayleigh wave (R) and the P wave (P) are labeled on the radial component and the X wave (X) is identified on the longitudinal

component. Individual normalized traces (dashed line) and their comparison to a normal mode solution (solid line) are shown at

epicentral distances D ¼ 45� (middle) and D ¼ 135� (bottom). The top curves show the difference between the two solutions amplified

by a factor of 10.
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in the Earth at periods longer than about 30 s [3]. To illustrate this behavior, we consider a homo-

geneous self-gravitating solid sphere which is excited by a shallow (’63 km) strike-slip source. The 3D

mesh is identical to the one used for the non-conforming homogeneous elastic case and the time step is

again Dt ¼ 1 s.

Fig. 11 shows the displacements recorded at the surface and their comparison to the purely elastic so-

lution at epicentral distances ranging from D ¼ 110� to D ¼ 170�. Since each couple of traces is normalized

individually, the focusing of both the Rayleigh wave and the X wave near the antipode is not apparent in

the plot.
The main feature observed in the top panel of Fig. 11 is the decrease of the Rayleigh wave group velocity

together with a slight phase shift of the Rayleigh pulse. For example, the second arrival (R2) is delayed by

about 50 s at an epicentral distance D ¼ 110�, which corresponds to a diminution of 0:85% with respect to a

reference group velocity of 5000 m s�1. Surprisingly, an opposite effect is observed on the X wave, that is a

Fig. 11. The top panel shows the transverse (left) and longitudinal (right) surface displacements recorded in a homogeneous sphere in

the elastic case (bold gray lines) and considering gravity (thin black lines). Gravity causes the Rayleigh wave group velocity to decrease,

the X wave to be slightly accelerated while it does not affect the Love wave. The first two orbits of these surface waves are labeled R1,

R2, X1, X2, L1, and L2, respectively. The bottom panel compares the results obtained by the SEM (dashed line) to the normal mode

solution (solid line) at epicentral distance D ¼ 168:75� for both transverse (left) and longitudinal (right) components. The difference

between the two solutions amplified by a factor of 10 is displayed above the individuals traces.
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slight apparent velocity increase in presence of gravity. At a distance of D ¼ 110� the first energy arrival in

the X2 pulse has indeed a 15 s advance with respect to the elastic reference pulse. This results in an increase

of about 0:40% with respect to a reference group velocity of 8000 m s�1. However, it seems that gravity

affects the seismic phases forming the X wave in a different way and a global time shift is hardly observed on

the entire X pulse. Eventually, the Love waves are unaffected by gravity as it is expected from their pure

toroidal nature.

The bottom panel of the figure shows the comparison of the SEM results to the reference normal mode

solution at an epicentral distance of D ’ 169�. The residuals have the same magnitude as for the homo-
geneous elastic case (compare with Fig. 6) and do not exceed a few percents of the reference solution.

7.4. Fluid outer core

As a last example, we consider a model having a homogeneous solid inner core with radius 1371 km, a

heterogeneous fluid outer core and a 2500 km thick homogeneous solid mantle. The variation with depth of

the elastic parameters as well as the density are shown in Fig. 12. The density increases from 7000 kg m�3 in

the mantle to 9000 kg m�3 in the inner core. From this density profile we build a P -velocity model for which

the Brunt–V€aais€aal€aa frequency is exactly zero. This is done by first computing g from Poisson�s equation and

then solving (13) for c. The P -velocity values at the boundaries of the outer core are then extrapolated to the

mantle and to the inner core. The S-velocity model is obtained after assuming that the solid parts of the

model are Poisson solids, i.e., with k ¼ l or a ¼
ffiffiffi
3

p
b.

Note that the variation of the P -velocity is highly unrealistic in the model of Fig. 12. However, a

neutrally stratified outer core is certainly a reasonable assumption for the Earth, given the actual resolution

of density in global tomographic models [74].

The spectral element grid we use has a non-conforming interface in the fluid outer core at 3750 km

depth. The source time function is the second derivative of a Gaussian with a dominant frequency f0 ¼ 1

mHz, and the time step is Dt ¼ 1 s. Such a low frequency source is expected to generate very long period

surface waves with a non-negligible sensitivity to the structure of the outer core. Since gravity only affects

surface waves, this provides a reliable test for validating the implementation of gravity in the fluid.
Fig. 13 shows the surface displacement field obtained for an explosive source set at 147-km depth. The

seismograms exhibit a strongly dispersive Rayleigh wave, with an apparent group velocity close to

5000 m s�1. As discussed previously, the dispersive nature of the Rayleigh pulse arises because its dominant

Fig. 12. Variation with depth of the density (solid line), the P -velocity (dashed line) and the S-velocity (dot-dashed line) for the fluid–

solid model considered in this paper. Both the inner core and the mantle are homogeneous Poisson solids whereas the fluid outer core is

heterogeneous, neutrally stratified.
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wavelength is now comparable to the curvature of the free surface. Only the first P arrival as well as the

surface X wave can be clearly identified at those frequencies, and have been labeled on the plot.
The comparison of individual traces with the reference normal mode solution is shown in the bottom of

Fig. 13. The match is found to be satisfying on both the radial and the longitudinal components, since the

residuals are close to 1% throughout the simulation, which is 4 h long.

Another feature of interest, related to the presence of the fluid outer core, is the excitationof a Stoneleywave

at the core-mantle boundary (CMB). Although Stoneley waves are never recorded at the surface of the Earth,

they provide a demanding validation test to the fluid–solid coupling strategy presented in this paper.

Fig. 14 shows the displacement field recorded at the CMB for an explosive source located close to the

fluid–solid boundary, at 2437-km depth. A strongly dispersive Stoneley wave is clearly seen on the radial
component, with an apparent group velocity close to the Rayleigh wave group velocity. The comparison of

the SEM results to the reference solution shows a very good agreement, as the residuals reach only a few

percents at the end of the simulation.

Fig. 13. The top panel shows the radial (left) and longitudinal (right) surface displacements recorded in the model of Fig. 12 for a

shallow explosive source. Amplitudes larger than 95% of the maximal value have been clipped. The different labels refer to the Rayleigh

(R) and X (X) surface waves and to the first (P) arrival. The bottom panel compares the results obtained by the SEM (dashed line) to

the normal mode solution (solid line) at epicentral distance D ¼ 90� for both radial (left) and longitudinal (right) components. The

difference between the two solutions amplified by a factor of 10 is displayed above the individuals traces.
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8. Conclusions

We have presented a parallel spectral element approximation to the elastic wave equation in an

isotropic solid–fluid sphere, accounting for the effects of gravity within the Cowling approximation

and assuming a neutrally stratified fluid. The method is based upon a non-conforming paving of the

sphere which enables to adapt the grid-points sampling with depth. We have presented the results of

a few benchmark tests for radial models of elastic parameters, that illustrate the accuracy of the

method. In particular, it has been shown that the propagation of surface and interface waves is

successfully modeled, even in the case of a strong physical dispersion. Future work will focus on

including the rotation as well as a complete implementation of self-gravitation, i.e., with mass re-
distribution. The method can readily be adapted to laterally heterogeneous models, for which nu-

merical experiments should help to provide a better understanding of 3D wave propagation in

planetary interiors.

Fig. 14. The top panel shows the radial (left) and longitudinal (right) displacements recorded at the core-mantle boundary in the model

of Fig. 12 for a deep explosive source. Amplitudes larger than 90% of the maximal value have been clipped. The dispersive Stoneley

wave (S) is labeled on the radial component. The bottom panel compares the results obtained by the SEM (dashed line) to the normal

mode solution (solid line) at epicentral distance D ’ 160� for both radial (left) and longitudinal (right) components. The difference

between the two solutions amplified by a factor of 10 is displayed above the individuals traces.
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Appendix A. Transition between a 2-sphere and a cube

Consider a 2-sphere with radius a and a cube which half-length is b, both of them being centered on the

origin of a Cartesian coordinates system. It is assumed that the cube lies inside the sphere, that is
ffiffiffi
3

p
b < a.

As a starting point, the volume comprised between the sphere and the inner cube is decomposed into six

regions, each of these being a deformed cube with its upper face leaning on the 2-sphere (see Fig. 2). Let

ðn; g; cÞ be the generic vector on the reference unit cube K3 ¼ ½�1; 13. We hereafter define for each region of

the mesh, the transformation from ðn; g; cÞ to the Cartesian coordinates ðx; y; zÞ. Following Ronchi et al.

[31], we first introduce the auxiliary variables:

X ¼ tan
p
4

n
� �

; ðA:1Þ

Y ¼ tan
p
4

g
� �

; ðA:2Þ

d ¼ 1
�

þ X 2 þ Y 2
��ð1=2Þ

; ðA:3Þ

W ¼ c þ 1

2
: ðA:4Þ

Inside a given region W spans the interval ½0; 1, with fW ¼ 0g corresponding to the surface of the inner

cube and fW ¼ 1g to the 2-sphere. The value of W is used to define a linear transition from the cubed sphere

mapping [31] to the Cartesian metric inside the inner cube. The analytical expression for this transfor-

mation writes:

Region 1 (x > 0) Region 2 (y > 0) Region 3 (x < 0)

x ¼ adW þ bð1� WÞ x ¼ �y XW þ nð1� WÞ½  x ¼ �adW � bð1� WÞ
y ¼ x XW þ nð1� WÞ½  y ¼ adW þ bð1� WÞ y ¼ x XW þ nð1� WÞ½ 
z ¼ x YW þ gð1� WÞ½  z ¼ y YW þ gð1� WÞ½  z ¼ �x YW þ gð1� WÞ½ 

Region 4 (y < 0) Region 5 (z > 0) Region 6 (z < 0)

x ¼ �y XW þ nð1� WÞ½  x ¼ �z YW þ gð1� WÞ½  x ¼ �z YW þ gð1� WÞ½ 
y ¼ �adW � bð1� WÞ y ¼ z XW þ nð1� WÞ½  y ¼ �z XW þ nð1� WÞ½ 
z ¼ �y YW þ gð1� WÞ½  z ¼ adW þ bð1� WÞ z ¼ �adW � bð1� WÞ
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As for the cubed sphere mapping, the metric tensor arising from this transformation is identical in each

region. But its non-diagonal terms are a priori non-zero, implying that the lines within the mesh are not

orthogonal. Finally, note that setting W to 1 in the previous formulae provides the analytic expression to

obtain a cubed sphere of radius a.

Appendix B. SEM discretization

In this annex we detail the main features of the SEM approximation of the wave equation, restricting

ourselves to the solid regions. The reader is referred to [40] and [75] for a complete presentation of the
spectral element method.

B.1. Numerical integration

The numerical integration rule is based upon the Gauss–Lobatto–Legendre (GLL) points, which are
defined on the reference 1D element K ¼ ½�1; 1 by:

nN0 ¼ �1; nNN ¼ 1; L0Nðn
N
i Þ ¼ 0 8i 2 f1; . . . ;N � 1g; ðB:1Þ

where L0N stands for the derivative of the Legendre polynomial of degree N . On the reference unit segment

K, the numerical integration formula provided by the ðN þ 1Þ GLL points is exact until polynomial order

ð2N � 1Þ:Z
K
qðnÞdn ¼

XN
i¼0

qNi qðn
N
i Þ 8q 2 P2N�1ðKÞ: ðB:2Þ

In the previous formula, the ðN þ 1Þ scalars qNi are the integration weigths defined as:

qNi ¼
Z

K
hNi ðnÞdn; ðB:3Þ

with ðhNi ; i ¼ 0 . . . NÞ standing for the Lagrange polynomials of order N related to the ðN þ 1Þ GLL points:

hNi ðn
N
j Þ ¼ dij 8ði; jÞ 2 f0; . . . ;Ng2; ðB:4Þ

where d is the Kronecker delta. Making use of Eq. (B.2) in each space direction, it is straightforward to

define a numerical integration rule on the unit square K2 or cube K3. The integral of a given scalar field q
defined on the unit cube will thus be approximated by:Z

K3

qðnÞdn ’
XN
i¼0

XN
j¼0

XN
k¼0

qðnNi ; n
N
j ; n

N
k ÞqNi qNj qNk ; ðB:5Þ

where n stands for the generic vector on K3. Note that the integration rule defined by (B.5) is only exact for

tensorized polynomials pertaining to P2N�1ðKÞ � P2N�1ðKÞ � P2N�1ðKÞ.
We will hereafter write

H N
Ka to refer to the numerical integration based upon the aðN þ 1Þ GLL points on

the reference element Ka. For example, the right hand side of Eq. (B.5) will be denoted
H N

K3 qðnÞ.

B.2. Polynomial basis

In order to construct the discrete spaces VS
h and MS

h defined by Eqs. (48) and (50), one needs to provide

basis for the polynomial spaces PN ðK2Þ and PN ðK3Þ. In the SEM, these basis are formed by tensor product
of the Lagrange interpolants related to the GLL points on K as defined by Eq. (B.4). Let for example w
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stand for an admissible displacement field with Cartesian components wb

� �
b¼1;3

. To compute the value of

wb at the grid point ðx; y; zÞ ¼ Fe
jðn; g; cÞ on sej, one writes:

wbðx; y; zÞ ¼ wbjsej �Fe
jðn; g; cÞ ¼

XN
i¼0

XN
j¼0

XN
k¼0

wbðxj;e
i ; yj;e

j ; zj;ek ÞhNi ðnÞhNj ðgÞhNk ðcÞ; ðB:6Þ

where ðxj;e
i ; yj;e

j ; zj;ek Þ are the collocation points on sej:

ðxj;e
i ; yj;e

j ; zj;ek Þ ¼: Fe
jðn

N
i ; n

N
j ; n

N
k Þ: ðB:7Þ

B.3. Scalar product and bilinear forms

The L2ðXSÞ scalar product between two admissible displacement fields v and w writes:Z
XS

vðxÞ � wðxÞdx ¼
XK
j¼1

Xnj

e¼1

Z
sej

vðxÞ � wðxÞdx: ðB:8Þ

Each elementary integral can then be expressed on the reference cube via the local transformation Fe
j:Z

sej

vðxÞ � wðxÞdx ¼
Z

K3

vj;eðnÞ � wj;eðnÞjJe
jjðnÞdn; ðB:9Þ

where vj;e¼: vjsej �F
e
j, w

j;e¼: wjsej �F
e
j and Je

j is the Jacobian matrix related to Fe
j. Applying the numerical

integration rule (B.5) to the previous equation yields the final expression for the approximated scalar

product:

ðv;wÞh ¼
XK
j¼1

Xnj

e¼1

I N

K3

jJe
jj vj;e � wj;e½ ðnÞ 8ðv;wÞ 2 VS

h �VS
h: ðB:10Þ

Note that the numerical integration involved in (B.10) is never exact since the integrated quantity vj;e � wj;e

is already in P2N ðK3Þ.
The approximation of the bilinear formAS goes the sameway, except for the differential operators that are

involved inEq. (41). To take this difference into account, we introduce themodified operators on the unit cube:

~rr/j;eðnÞ ¼: r/ðxÞ; ðB:11Þ

~rrvj;eðnÞ ¼: rvðxÞ; ðB:12Þ

~rr � vj;eðnÞ ¼: r � vðxÞ; ðB:13Þ

where x ¼ Fe
jðnÞ and where ~rr denotes spatial derivation with respect to the n coordinate. Expressing the

integrals of Eq. (41) back onto the unit cube and using the numerical integration (B.5) yields the final

expression for AS
h:

AS
hðv;wÞ ¼

XK
j¼1

Xnj

e¼1

I N

K3

jJe
jj ~rrvj;e : !j;e : ~rrwj;e
h i

ðnÞ

þ
XK
j¼1

Xnj

e¼1

I N

K3

jJe
jj qj;eSym �wwj;e ~rr � vj;e

nh
� vj;e � ~rr�wwj;e

oi
ðnÞ; ðB:14Þ

where the notation �ww stands for the scalar product g � w.
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To derive the approximated bilinear form BS
h we recall the definition of BS given by (43):

BSðw; lÞ ¼
XK
j¼1

Xnj

e¼1

Z
tej

wj

�
� wj0

�
� lj dC:

Note that both lj and wj are defined on the same quadrangles, unlike wj0 which is defined on the coarser

grid tj0 . For a given quadrangle tej, let us denote by aðeÞ the set of indices such that:

8a 2 aðeÞ; taj0 \ tej 6¼ ;: ðB:15Þ

On tej \ taj0 the following trivial equality holds:

wj0 jtej ¼ wj0 jtaj0 : ðB:16Þ

This can also be expressed as:

wj0 jtej ¼ wj0 ;a � Ga
j0

� ��1
; ðB:17Þ

which is desirable since wj0;a is defined as a polynomial on the unit square K2. Then, expressing the integrals

of (43) back onto the unit square and making use of numerical integration yields:

BS
hðw; lÞ ¼

XK
j¼1

Xnj

e¼1

XaðeÞ
a¼1

I N

K2

jJe
jj ðwj;e
h

� Pj;ewj0;aÞ � lj;e
i
ðnÞ; ðB:18Þ

where we have denoted:

Pj;ewj0 ;a ¼: wj0 ;a � Ga
j0

� ��1 � Ge
j

h i
; ðB:19Þ

and where jJe
jj stands for the Jacobian of the 2D transformation Ge

j.
To compute the jump matrix two steps are thus required. First, the topology of the non-matching grids

has to be detailed through the sets of indices aðeÞ defined by (B.15). Second, the expression of the mapping

local to the unit square Ga
j0

� ��1 � Ge
j

h i
has to be provided before to perform the numerical integration. Both

steps are quite straightforward to achieve, especially for simple grids where a coarsening of a factor of two

is considered in each direction of space.
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